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Biology needs principled modeling
Life is complex
Even single bacteria contain millions of interacting molecules.

Probabilistic mechanistic models (PMMs) express 
physical understanding but allow uncertainty
Molecular Biology often uses deterministic 
models based on physical mechanisms. Prob-
ability is used to study noisy processes.

Using probability more broadly to express in-
complete knowledge provides a principled way 
to incorporate experimental evidence. 

PMMs are generative probability models based 
on physical mechanisms. Unlike black-box 
models, they are highly structured and have 
meaningful parameters with strong causal interpretations.
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Directly specifying a probability model is impractical when work-
ing with systems containing hundreds of components. Moreover, 
biologists often receive little training in probability and statistics.

Instead, we propose a modular hierarchical framework where each 
level can be automatically compiled to the one below it.

Domain specific modeling languages
On the top level, we provide a problem specific language that do-
main experts interact with. These can be based on ones already in 
use in a particular field and can hide many implementation details.

We will be interested in modeling languages defined by construc-
tions on Markov categories. Objects of such languages compile to 
morphisms representing generalized probability models.

String diagrams as graphical models
Markov categories provide an abstract setting for probability the-
ory [2] where morphism represent non-deterministic maps. De-
scribing such morphisms with string diagrams [3] can be seen as a 
type of probabilistic graphical model [4]. 

Because of the mechanistic basis of our models, causal interpreta-
tions are warranted. For instance, we can use them to predict the 
effect of interventions [5] and to guide future experimentation.

Bayesian inference can be formulated abstractly in Markov catego-
ries [6].  Moreover, Markov categories enriched in divergence mea-
sures [7] could serve as the basis for variational inference.

The compositional nature of theses methods allows them to be 
performed according to several decompositions, some of which 
may be more computationally efficient. This should allow us to ex-
ploit the sparse structure of our models.

Computation as probabilistic programs
Models specified as string diagrams can be compiled to probabilis-
tic programs on which inference techniques can be applied.

A PSN is a network consisting of interconnected transducers. 
At each time-step, a transducer updates its state according the 
inputs it receives. The updates can be probabilistic.

E. Coli

Proteins: 	 3 million  
			   4k types

Fats: 		  20 million

DNA: 		  5 million basepairs 
			   4k genes

mRNA: 		 1500
Figure 1: E. Coli cells under electron micro-
scope (left) with illustration of internal struc-
ture (right). Adapted from [1].

Modern experiments require automated analysis
High-throughput techniques perform thousands of measurements at once. 
To evaluate such data we need automated methods for expressing and up-
dating our incomplete state of knowledge.

DNA sequencing

10 billion basepairs / run

Protein mass spectrometry

1500 protein concentrations / run
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PSNs are lenses in BorelStoch, the category of Markov kernels 
and standard Borel spaces. Each transducer has an update map

Dynamics
The update map of a PSN inductively de-
fines a morphism in BorelStoch represent-
ing its discrete dynamics (Fig. 5). We add 
Gaussian noise to the output to model mea-
surement error. The result forms a type of 
hidden Markov model.

Figure 2 shows proteins in a signaling network that interact 
along directed wires. We can model this as a PSN where each 
protein is a transducer activated according to  

PSNs as lenses

∆α
∆t = r(H(i)− α)

with state α, input vector i, rate r and hyper-Hill function H [8].

Probabilistic signaling networks (PSNs)

Figure 2: A protein signaling network with feedback.

representing the probability 
where kT is its number of inputs. Transducers are wired together 
by lens composition [9] according to the network structure. This 
yields the global update and output maps shown in Figure 4.

p(α[t+ 1] | α[t], i1[t], . . . , ikT
[t])

upT : [0, 1]× [0, 1]kT → [0, 1]

Modeling in Markov categories

Figure 3: Hyper-Hill functions are multi-input gener-
alizations of Hill functions (top left). They sigmoidally 
interpolate values specified on the corners of the hyper-
cube. They generalized boolean functions and can cap-
ture biological activation landscapes (bottom left).

Figure 4: The global output (left) and update (right) maps  
can be derived from the clearer network representation.

Figure 5: Dynamic model describing the probability of an output sequence given 
and input sequence and initial state. The pattern can be extended arbitrarily.
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If we fix all parameters of our PSN, we can simulate its dynamics. 
Suppose that A and C are only activated if all their inputs are ac-
tive. Assume further that C provides negative feedback to B so that 
B is only activated if A is active and C inactive. Driving the net-
work with a constant input of 1 results in the dynamics shown in 
Figure 6. We emulate measurement of C by adding Gaussian noise.

Simulation
We now recover the parameter values from our synthetic data 
using Markov chain Monte Carlo (MCMC) inference in Turing 
[10]. The necessary computer code can be automatically gener-
ated from a graphical specification of the PSN in software.

We suppose we have prior knowledge that C inhibits B and that 
A is activated by its input. We do not assume any knowledge 
about the other interaction parameters. 

The results of the inference are shown in Figures 7 and 8. We 
faithfully reconstruct the hidden states as well as most interac-
tion parameters. The two parameters that remain unidentified 
cannot in principle be inferred from our experiment.

Using MCMC is convenient but does not exploit the structure of 
the problem. Finding general methods for efficient inference on 
string diagrams is the focus of current work.

Figure 6: Simulated activities with constant input sequence of 1 and interactions de-
scribed above (left). Emulated measurements by adding Gaussian noise to C (right).

Figure 7: Inferred activities of the hidden states.

Figure 8: Inferred interaction parameters. The (+) and 
(−) refer to the effect when the input is active or inactive.
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